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On an Iterative Process in the Solution of the Regular N-Body Problem 

INTRODUCTION 

This paper applies to the n-body problem of the general 

iterative process generated in ref [ 6 ]  for the s olution of any system 

of differential equations with analytic properties, 

specialized form, and in a somewhat different context, a comparable 

method is given in ref 141 for the solution of the problem. 

In a quite 

If the solution of a system of differential equations is 

identified with the invariant of a complete metric space under a con- 

.traction mapping o f  the space into itself,13 pp. 43-44] then the 
process becomes a method of approximating (successively) to the solu- 

tion. The first part of the paper thus evolves this formal methodology 

in the solutiqn of the problem. The iterative solution is expressed 

in two forms, The first statement of the iterative solution is re- 

cursive and the second is linear and irreducible. 

The latter gives the iterative solution as a function of an 

arbitrary functionwhich is the initial element of the iterative 

sequence, Three items are involved in the linear it6rative formulation: 

an arbitrary function, coefficients and an error function., For the 

linear expression to be well defined, the arbitrary function must be 

specified, the coefficients must be given in terms of the initial con- 

ditions of the motion of the n-bodies and the error function must be 

characterized, These problems are resolved in the first part. 

The analytical phases of the problem is discussed in the 

second part. Here the basic question of the connection between the ele- 

ments of the iterative sequence and the actual solution is answered. The 

* matter of the region of convergence of the series representing the actual 

solution, is formulated in two forms and the rate of convergence 

of the elements of the iterative 



sequence r e l a t i v e  t o  ( w h a t  i s  c a l l e d )  t h e  p a r t i a l  sum sequence i s  given 

a measure, I n  t h e  f i n a l  p a r t ,  a summary of the  paper w i th  a very b r i e f  

d i r e c t i v e  i n  numerical  determinat ion,  i s  given. 

I. THE ITERATIVE PETHODOLOGY 

T h i s  p a r t  dea l s  w i t h  the f o r m a l  i t e r a t i v e  process  i n  t h e  

s o l u t i o n  of  t he  n-body problem. However, i n  i t s  gene ra t ion  a s e r i a l  . 

a s e r i a l  a spec t  w i l l  be involved,  so  that the  process  may be descr ibed 

as a pseudo i t e r a t i v e  mode i n  t h e  determinat ion o f  a sequence o f  suc- 

ces s ive  approximations t o  t h e  solut ior , .  I n  t u r n  t h i s  sequence w i l l  be 

transformed i n t o  a l i n e a r  expression where any element w i l l  depend on 

t h e  i n i t i a l  a r b i t r a r y  element o f  the sequence. 

Since th i s  p a r t  o f  t he  paper depends, i n  a measure, on t h e  

two r e fe rences  r41, [63 , we will repea t  a few i tems,  for t h e  s a k e  of 

' completeness, of t h e  methodology contained there .  The a n a l y t i c a l  j u s t i -  

f i c a t i o n  o f  tile process  w i l l  be considered i n  the  p a r t  t ha t  f o l l o w s .  

Related Systems of D i f f e r e n t i a l  Equations: Three r e l a t e d  systems 163 

of d i f f e r e n t i a l  equat ions a r e  generated i n  this  s e c t i o n .  The i n i t i a l  

system of t h e  n-body problem i s  given by the  equat ions o f  motion: 

( 1 0 2 )  : Pos i t ion  vec to r  of the  i th  po in t  mass,crvli# 

(1.3) Sca la r  components o f  Xi  r e l a t i v e  t o  a C a r t i s i a n  i n e r t i a l  

coord ina te  system. 
* (1.4) g4' = x S d X L  ; The r e l a t i v e  p o s i t i o n  vec tor  from the  i t o  the j 

p a r t i c l e .  

(lo5)zLkL= ~dAL_~L* . 'Sca la r  - components of the  r e l a t i v e  v e c t o r  



To the  o r i g i n a l  system (141,)  two o the r  systems a r e  added: 

The second system (1.8) i s  der ived from (1.1) by the  a d d i t i o n  o f  sub- 

s c r i p t s .  These s u b s c r i p t s  o r i g i n a t e  from the p a r t i a l  sums formed from 

t h e  s e r i a l  s o l u t i o n  

(1.10) 

of t h e  system (1.1), namely 

The t h i r d  system (1.9) i s  der ived,  i n  fo rm,  from (1.8), and may be 

c a l l e d  t h e  i t e r a t i v e  system o f  (1.1). It  i s  manifest  that the three 

I 

systems a r e  d i s t i n c t  a t  l e a s t  formally,  The f i r s t  system c o n s i s t s  of 

3 n equat ions,  whereas the  o t h e r  two systems a r e  given by ~ w x K ~ , O C = ! , Z , - - -  
9' 

expressions.  

To give f u l l y  spec ia l i zed  meaning t o  (1.8), (1.9) we de f ine  

the  func t ions  s and of (1.1) and thus a r e  ab le  t o  express  these  

same symbols w i t h  s u b s c r i p t s ,  by p a r t i a l  sums, namely 

Let the p a r t i a l  sums o f  (1.10) and (1.11) def ine  the symbolZ& 

as g iven  by (lolo), and the  s ymbols Rd, &, & by t h e  expressions 



. 
* ' 40 

(1.12) 

integer, 

The symbol2 though given by (l.lO), is not well defined. We obviate 

this lack by- connecting X and 'Ix by the specification that 

On first glance it would appear that is still ill-defined since 

the symbol has no meaning attached to it. However, it will be 

shown in the sequel (as it has beens horn i n 1 4 3  

text) that 

(in a different con- 

The Non-recursive Form of  the Iterative Solution: To generate a non- 

recursive form of the iterative solution /YO,  we first unfold its 

recursive form [ 47 . 
and (1.9) in expression (1.13). This leads to the statement, 

i.4 

. To do so substitute the right members of (1.8) 

(2.1) 

In view of definition ( lob) ,  equation (2.1) becomes 

By solving this equation for we generate the recursive form 

where the symbols R j C ,  e' are defined as 



5.  
The recursive sequence of successive approximations 

(2.4) ( x;", x,.: +----A;---) 
to the actual solution x A k  of (1.1) is generated by (2.2). 

ed set of solutions is formally valid, provided the coefficients 

This order- 

can be expressed in terms of known or computable functions for any d 

and where e - 4 L  d is well defined. For the latter entity a measure 

will be derived,in the seque1,through the realization that the actual 

solution and the sequence of iterative solutions X;"- are embedded in 

a complete metric space for which a contraction map:ling is permissable 

such that the invariant of this mapped space into itself is the solution 

of (1.1) and which is the limit of the sequence of functions (2.4). 
If it is assumed, f o r  the time being, that the coefficients 

of ( 2 . 2 )  are well defined then it is manifest that each element inthe 
& A  

. sequence (2,4) is ultimately a function of the initial element x0 , 

This function however is as yet undefined (arbitrary). To show the ex- 

plicit dependence of the iterative solution XLk,for any d 70 

arbitrary function 

on the 

XDLA,the recursive formula (7.2) is reduced to the 

and where it will be shown that 

(2.6) & - 0  for any i, h. 

The formula (2.5) may be verified by mathematical induction. , 

d - r -  O L  

The iterative elements xLL(+Jin the sequence (2.4) are now 
expressed by (2.5) as a linear function of the initial arbitrary element 

The expression of the solution as a recursive X:A($) of the sequence, 

form (2.2) has been reduced to an irreducible linear form (2.5) 



6 .  

The linear statement ( 2 . 5 )  unfolds two problems whose 

resolution is necessary for a complete formal iterative representation 

of the actual solution 

of the n-body problem. 

scheme (natural to the context),of the many possible modes, f o r  the 

selection of some one class of functions with regular properties over a 

region to replace the arbitrary function, This class should be an 

The first problem is to choose some appropriate 

ordered set such that a.ny function in this chosen sequence is a closer 

approximation to the actual solution )(4A(y)than any of its predecessors. 

Secondly, it will have to be shown that the limit t5zc=0 third prob- 

lem, contingent on the second, is involved, namely to show that 
d - 5 @  

for a finite d is a measure of the error of the iterative 

solution relative to the actual solution X L d  . These three 
L 

. problems will be resolved in the succeeding part of the paper, 

The Recursive Formulatim of the Coefficients of the Linear Form: The 

first necessary step in an explicit statement of (2,5), is to give de- 

fined expression to the coefficients A and C. Two modes of expression 

are open, namely a recursive 141 and a non-recursive one. We deal with 

the former first, 

The substitution of (1.12-b) in the definition (2.3) leads to 

the expression 

which express ion turns into 



7. 
We note that the serial coefficients $ and6 must initially be formulat- 

ed in recursive form in order to gain defined statements for A and C 

The serial coefficients r6 a n d 5  are given in reference 19 
in the following form: 

Slight consideration of the formulae (3 .3) , - - -  ( 3 . 5 )  will 

show that by cyclical use of these expressions the ~~alues of 

and f i 4  may be attained f o r  any value of 4 
coefficients are ultimately dependent on the prior knowledge of 5 
and Pf" 

6;f 

&'A 

and that each of th.ese 

By means of the identities 

the 6% boundary conditions for the n-body problem are spcified. So 

that the eoefficients are ultimately expressed as functions of the 

boundary conditions. 

The coefficients flz and cL-z- of the linear Solution (2.5) 
thus become, in view of (3.3),--- , ( 3 . 6 ) ,  well defined functions for 

any' d and a given b 7 o . The three recursive formulae may then be 

used either in the actual solution f jL(JJ of (1.1) through the serial 

representation (l.lO),or more significantly in the iterative solution 

Xi '"(* )  given by (2.5') 

The Non-Recursive formulation of the Coefficients of the Linear Form: 

The definitibn of the coefficients A and C of the linear iterative 



L 

8. 

s o l u t i o n  ( 2 . 5 )  were given as func t ions  of t h e  three  s e r i a l  c o e f f i c i e n t s  

?,6, f i n  the  t h r e e  r e c u r s i v e  formulae (3.3),--- , (3.5)* A more 

po ten t  formula t ion  i s  now given f o r  t hese  t h r e e  q u a n t i t i e s  i n  terms o f  

t h e  s i n g l e  c o e f f i c i e n t  where 5 i t s e l f  i s  a func t ion  o f  t h e 6 7 i n i t i a l  

condi t ions .  

The second type o f  formulat ion as an i r r e d u c i b l e  r ecu r s ive  

express ion ,  i s  given i n  r e f  Is] . The bas i c  s ta tement  w i t h  i t s  d e f i n i -  

t i o n s  i s  w r i t t e n  as f o l l o w s :  



9. 

and where the remaining symbols in (4.6) are defined by (42 ),---(4.5). 
o g '  

L# .k 
.&= 0 and R4'= *=a ZC, % 9 

$ " i s  F C f k 4 '  Since 

it follows that 

It further follows, from (4.51, that 

' .  
The expression for Cf Jczt in view of ( 3 * 3 ) ,  is given as 

The first set of recursive equations ( 3 . 3 ) ,  (3.4), (3.5) 
for the serial coefficients e,c, 
.f'= s(6 5) 
expressions in terms o f  3 alone, namely f=f'csjj G=(i(f'j, $= fCSJ 
in the equations (4.ll), (4.10) and (4.1). These in turn are readily 
seen to be functions of the 6 37 boundary c onditions, 

are in the form~=P(~.)9G=G(f~f), 

These have now been transformed into irreducible recursive 

L iL 
as given by (3.1) and ( 3 . 2 ) ,  

I The coefficients A, and f4 
again become more explicitly formulated by the alternative process 

given by the irreducible recursive statements (4 . l ) ,  (4.91, (4.10). We 

thus have at our disposal two processes in the formulation of the 

Coefficients A and C of the linear iterative formula ( 2 . 5 ) .  

I1 THd AiIALYi'iCAL PHASE 

The formal phase of the iterative process in the solution 
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10 . 
of the n-body problem is embodied in the iterative formula (2.5) which 
has the properties that it is linear, non-recursive and irreducible, 

Associated with this expression are the two modes o f  determining the 

coefficients of (2.5). 
The basic problem still remains and that is to show the 

analytical validity of the iterative expression, namely that 

(5.9) 

where, of course, ~ " ( 9 )  
LJC 4'L LA and %:%, d= /,A, - -  - 

of solutions of  the iterative system (1.0) and where H is a complex 

region on which the right member of (1.1) is analytic f o r  any i, J 

is the actual solution of  the system (1.1) 

is an element in the sequence ( X o  , %, X L  , - --) 

and h. 

In conjunction with this basic problem are the secondary 

ones: to determine the region R of convergence of the power series 

expressing the actual solution; to find an appropriate expression for 

the arbitrary function )io i A ( f 1  in the iterative sequence of solutions 

\x:-eg %;-; - - -  ) and to find some measure for the rapidity of con- 

vergence of the sequence relative to the actual solution. 

The Radius of Convergence for the Actual Solution: 

member of (1.1) is analytic in the neighborhood o f  the origin and this 

conbined with t.he specifications cf the bounda-ry condi ti ons a l lows  us 

Since the right 

to represent the solution by the power series, 

converging inthe neighborhood of the origin. Our first concern then 

is to specify the region R of convergence inthe complex plane of the 

representation (5.1). Two regions are specified in this section, one 



11 . 
a minimal and the other a maximal region with their corresponding 

radii , 

(1) The former is given in reference 111 . It is there 

specified that the series (5.1) converges for all real value of t in 
the interval given by 

a 
( 5 a ,  / A d  c ( m + q  

where the following definitions and conditions are fulfilled by a and c: 

( 2 )  The maximum finite region of convergence of the series 

(5.1) is discussed in reference Is] . 
essential items, 

We briefly recapitulate the 

Since it has been assumed that the motion of the system of 

n-bodies is t o  be regular, namely that no collisions or other real 

discontinuities exist in the motion for all finite time, it follows that 

any divergence of the series (q.1) is a consequence of only complex 

singularities that exist in a finite region of the complex Plane. The 

real axis must be void of any singularities. 

In order to generate a time series which represents the 

solution for all values of the real finite time and s o  corresponds tQ 



the assumed regular (analytic) motion of the system, the following 

Poincare trans f orrnat i  on[%^ W3-di s us e d, 

where t and T are two complex variables and where 2 specifies the 
distance that the nearest singularity of the solution is from the real 

axis of the t plane. It is readily observed that the mapping (5.3) 

transforms "the interior of the circle /TI=/ on the 7 plane into a 

band which extends to a distance 2 on either side of the real axis 
in the t plane,"[7> b.4231  . It follows that if a series in 7 con- 

verges for all 7 in the region I Y / L I  , the transformed series will 
converge for all t on the real interval--LjtL+= 

The series (5.1) as given in ref. takes the form 

where 7;$'(2) is defined by equation (2.5) of the reference. 

Since it is known, as stated, that the solution is analytic in the 

neighborhood of .;t= 0 , the series (5.4) converges in that neighbor- 
hood. So that the Cauchy limit ratio is valid. Thus with the use of 

the valid inequality, on (5.3) we generate the trans formati 

LA- 
<- - L l .  

With the use of formula (1.10) ref. [5] namely .yhd*' 
the above expression is reduced to the form 

& J d ,  r:"L 
r+i = 7, 9 



. 13- 
where 1 v,  It=& i s  t h e  l e a s t  value o f  t he  s e t  \ 9, f& s:=o f o r  

A. FA 

I n  r e fe rence  i t  i s  shown t h a t  

The q u a n t i t y  I = o  provided 

and f i n i t e .  The express ion  
9 

impl ies  t h a t  no movable s i n g u l a r i t i e s ,  given by Iv, * 5 q # z a =  0, 

a r e  a l lowable i n  t h e  r e g u l a r  motion o f  the  system. 

The d i scuss ion  may thus be summarized by t h e  

Theorem: The p m e r  s e r i e s  (5.4) rep resen t s  t he  a c t u a l  s o l u t i o n  X L L ( j )  

over the  time in t e rva l -& k L  +- provided t h a t  +Removable singu- 

l a r i t i e s  a r e  accounted f o r ,  namely that cond i t ion  (5.5) i s  s a t i s f i e d  

a t  t h e  i n i t i a l  s t a t e  (fzo) 

151 a r e  given by t h e  expressions 

of t h e  motion, The movable s i n g u l a r i t i e s  

The L i m i t  of t he  Sequence of I t e r a t i v e  So lu t ions :  Once the  ex i s t ence  

of t h e  a c t u a l  s o l u t i o n  and i t s  region of  v a l i d i t y  i s  formulated,  the 

b a s i c  problem p resen t s  i t s e l f ,  namely w h a t  r e l a t i o n  does the sequence 

of  i t e r a t i v e  so lu t ions  bear  t o  the a c t u a l  s o l u t i o n .  Is  the l i m i t  

r e l a t i o n  given by (6.0) a n a l y t i c a l l y  v a l i d ?  The problem has been 

r e so lved  i n  a topo log ica l  mode i n  r e fe rences  [6] and [3] , and by c l a s s i -  

c a l  means,and i n  somewhat d i f f e r e n t  contex t  bu t  i d e n t i c a l  s t r u c t u r e , i n  

r e fe rence  41 . 
(1) I n  the  f i r s t  two  re ferences  i t  i s  shown t h a t  t h e  sequence 

of i t e r a t i v e  s o l u t i o n s  o f  any system of f i r s t  order  d i f f e r e n t i a l  equa- 



tions with analytical properties may be subsumed as elements of a com- 

plete metric space a i c h  permits a contradiction mapping of the pace 

into itself. The space under this transformation has a unique invariant 

(satisfying an initial point) which is the limit of a sequence of ele- 

ments of the space. This invariant is the unique solution of thesystem 

of differential equations and the sequence is an iterative one,gener- 

ated by the contraction mapping in the form of a system of systems of 

integral equations. 

All the ingredients exist on changing the system of 332. 

equations (1.1) of the second order to a system o f 6 w  equations of the 

first order with the same 641 initial boundary conditions and analytic 

properties. We are thus able to transcribe, with slight formal 

changes, the extended existence theorem, given in reference [ 6 7  , to 
the form, 

Theorem: 

sequence x O 3  x;", 8;: -- - ) 

of a system of differential equations 

The analytic function X""(2) which is the limit of the 
&.A ' of iterative solutions ~ * 2  

is also the solution F L " ( * )  (if X d L ( + /  exists) of the 

system of equations 

satisfying the same boundary conditions, provided the initial arbitrary 

function X, of the seauence is defined to be analytic on the same 

region as )(^"(a) and satisfies the same boundary conditions. 

If then the expression (2.5) is transformed into the form 
oc-' 

& 

bc( jJ= ~,^t+, = &&-- -!% ) c b A L + k  ,*=e 
0 C - e  A+ CV d-- A," (6.1) x 



15. 
then the theorem further tells us that the limits of the coefficients 

exist and are bounded. This is so ,  since it has been shown that the 

solution A'/-(+) of (6.1) is analytic over a defined region. It will 

be verified by an independent classical consideration, that such is 

the case. We first give an expression f o r  the arbitrary function, 

(2) A glance at the statement (6.1) makes it manifest 

that the limit function x b A ( l )  remains undefined to the extent in which 
the arbitrary function X,"'(i! is unspecified. 

ways of definition, that mode is considered which is closely associated 

with the specification of the coefficients. 

Of the many possible 

Thus the partial sum (l.lO), 

b70,  fixed integer, 

of the series (1.10) is used. If d = o  , define the arbitrary func- 
tion by the expression 

It is manifest that the larger the value assigned to b the closer will 

the initial function )(tA(d/(and therefore every element in t he iterative 

sequence) be to the actual solution x"d(#) . 
xDcd (A) ,  may readily be shown to fulfill the two conditions demanded 

The now defined function, 

by the theorem. Since it is a polynomial, it is analytic in any region 

for which the solution is analytic, and for % = O  the boundary conditions 

are satisfied. 

( 3 )  The independent classical proof of the validity of the 

form, given by (6.1),is developed in reference p. 5771 . The 
results are summarized in the following 

) is given by the Theorem: The limit of the sequence (Xo %, XL&?--- &A r L  



16 

equality 

for any i, h and t in a defined region R; XL4( * l  

solution on R of the system of differential (1.1); A",(#,/ (d=/Jl,---J 

is the iterative solution given by formula (2.2). 

is the regular 

In the proof of this version of the theorem 141 it is shown 
that the following limits exist and have the following values: 

is bounded for 

any i, h and all t in the defined region R. If to these facts we add 

the statement that the initial function Xb''&(*) as given by (6.31, is 

defined analytic on R , we are in a position to formulate two state- 
ments : 

Theorem: The expression (6.1) may be written in the form 

X L % ) =  
Ra" 

(6.5) 

is bounded for any I, h, 

The second statement is contingent on the radius of con- 

vergence of the solution series, If the minimal radius of convergence 

is considered and as given by (5.21, 

following 

Theorem: The terms in the right member of (6.5) are analytic on the 

circular region R of radiuslAiL=, where the quantities a and c 

are given by (5 .2 ) ,  

If the maximal radius is given,then we may write the following 

Theorem: The terms in the right member of (6.5) are analytic on the 

circular region R of radius121 

, then we may formulate the 

a 

, --- (5 .2 ls  . 

provided that 



The Measure of Convergence of the I t e r a t i v e  Solu t ion :  The i t e r a t i v e  and 

approximate sequences 

have d i f f e r e n t  r a t e s  of  convergence t o  t h e  l i m i t  s o l u t i o n  X4/v(.tj 

of t h e  system of d i f f e r e n t i a l  equat ions (1.1). Our o b j e c t  i n  t h i s  

s e c t i o n  i s  t o  f i n d  a measure of t h e  r e l a t i v e  ra te .  

It w a s  shown i n  r e f .  L6] that  t h e  above sequences, success ive  

ap9roximate and p a r t i a l  sum so lu t ions  of systems (1.9) and (1.8) r e spec t -  

i v e l y ,  a r e  imbedded i n  a complete met r ic  space under a c o n t r a c t i o n  

mapping of t he  space i n t o  i t s e l f .  T h i s  space has an i n v a r i a n t  under 

t h e  mapping which i s  t h e  solutionXL'(kj 

(l.l), w i t h  t he  p rope r ty  that  

of t h e  o r i g i n a l  system 

The m e t r i c ,  p , of t h e  space has by d e f i n i t i o n  131 , t h e  

fo l lowing  p r o p e r t i e s :  

(7.1 

f o r  

and 

In t h e  above reference i t  w a s  g iven  that  

1' c , d + + c  M A  c-,,d+v-, j ~ , T = I , , L ~ - - -  1 M&LI  
any two elements and y,,(t)in L'4 t he  sequence (7.1-a) 

where M i s  t h e  l a r g e s t  i n  t h e  s e t  of upper bounds of t h e  f u n c t i o n s  



i a  . 
3 

Expression (7.5) s t a t e s  t h a t  t h e  m a x i m u m  of t h e  absolu te  d i f f e r e n c e  

between any two curves y i L  and 4d+f & A  i n  t he  sequence (7.1-a) 

i s  l e s s  than t h e  m a x i m u m  of t h e  absolu te  d i f f e r e n c e  of t h e  correspond- 

i n g  immediate predecessors .  

The d i f f e r e n c e  of t h e  e r r o r  f u n c t i o n  6 f o r  any two curves 

i n  the sequence (7.1-a) may be formulated,  by the fo l lowing  considera-  

t i o n s ,  By d e f i n i t i o n  (7.4) and (2.5), 

i t  fo l lows  that  

The m a x i m u m  of t he  absolu te  d i f f e rence  of t he  e r r o r s  of any two curve3 

of  t h e  i t e r a t i v e  sequence r e l a t i v e  t o  the  s o l u t i o n  r " L ( t J  i s  g iven  i n  

terms of the  elements of t h e  sequence as determined by t h e  l i n e a r  

formula (2.5). 
To measure t h e  r e l a t i v e  r a t e  of convergence of' the  two se -  

quences, r e l a t i o n s  must be e s t ab l i shed  between the  elements i n  t h e  t w o  

sequences. To do s o  we s t a r t  with t h e  b a s i c  d e f i n i t i o n  of c o n t r a c t i o n  

mapping i n  a complete me t r i c  space, namely that ?m,q C,d C m l - r , ~ - l ~ e r m - t , . n - r l ~ L I  

S p e c i f i c a l l y ,  f o r  t h e  elements )(k - &Ab Ab+- -*-L of t h e  sequence 

( 7 . 1 4 1 ,  we w r i t e  

(7 .7)  q, r + a  et-,, &+"'I 3 t =  ( 3 4  > /3 a f i x e d  i n t e g e r  7 0 ,  3 =O/ f j z , - - -  



. 

The convention is established that a subscript (3 

reference to the curves of the second sequence (7.1-b) 

or &- will imply 

Expression (7.7) is given in terms of the elernents as 

or 

This leads to the statement 

where 

Expression (7.7) or (7.8) specifies that the distance (or maximal 
difference) between any two functions,in the partial sum sequence (7e1-b)3 

is less than the distance of the two corresponding immediate predecess- 

ors. 

It is specified that the measurement of the metric is to 

start from the initial element common to both sequences, namely 

L4 4 4  4.A A 4  

of the two sequences. Then, in view of the triangular rule (7.3), for 
as defined by ( 6 . 3 ) *  Consider the functions J x.Cr and “fO+J I 4(3t+r, 



the metric, the connection between the elements of the two sequences 

are given by the inequalities 

(7010) 
(7.11) 

f)O,d+Y f eo,Q+S + $+S,d++- 

e,,,+,+, f c,-r + r&+f,(J-tJ+I 
Expression (7.10) relates the metrics between the elements y, 4-L , "/a+l. C-G 

and r r A  L A  
n+5 3 " l ow  of the first sequence and the elements T;.L=y.cL * J 

of the second and first sequences. A similar situation holds for (7.11)0 
p + ~  

The inequality (7.10) leads to 

(7012) q + s ,  d+i- e o j  d4T - ? 0 , ( 3 + 5  

provided the condition 

(7.12) eo, d + r  3 f0, P+s 

is satisfied. Likewise (7.11) gives 

(7813) c+y, p+s $ 1  2 C. ,O+J+ I  - f*,d-rt 

provided 

(7013)' G,n+s+1 F ?o,d+-P 

(7.14) Po, (3+5 eo, A+Y- 5 e,, (3+J+l d 

I 
Conditions (7.12)' and (7.13) are put into the form 

It is significant to note that if the condition (7.4) holds for the 
c 

, then if a mixed sequence of the three yo+s 9 7 hi-'+ 1 7 @ + S + I  

two sets of elements are formed,the order of the three elements will 

be as given above. Furthermore the two elements 

of the second sequence (7.1-b) will have the shortest distance to 

on either side,for any two elements of (7.1-b). 

the inequality relations (7.14) is fulfilled, we generate the order 

- 
Y(3+s+r 

Yd+? 
If then we assume that 

- r,,, 3 5?d+.r, % t S + l  * 

This quantity S must simultaneously satisfy the inequality - 
(7012) and (7.13). Furthermore f o r  7b+S and 'i of the sequence to be a+&+ I 
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nearest to 

(7014). The quantity5 thus indicates the number of terms in the in- 
terval of the second sequence from T o =  r'l, to ' y g + 5  required to aver 

the interval from 7, to yA+T of the iterative sequenceb In this 

sense the coverage given by s , is a measure of the rate of convergence 
of the iterative relative to the partial sum sequence, 

on either side, it must also fulfil.1 the conditions y,, J- 

c 

'The explicit' statements of (7,E!), (7-13) and (7.11~) are 

given by means of the definition of the metric (7.4) respectively as 

follows : 

The barred elements are given by the series (604) and the unbarred 

elements X by the linear form (2.5) 

A useful inequality may be derived from expressions (7,l2) 

and (7013)e By adding these statements we get 

e O + s , a + r  f P d47- j  ( 3 ' S 4 r  = P o J ( 3 W  - eo, c3+3 

it follows that Since G A S ,  d4+ Cn+s-rr,d+-r = c+y..n,r+ / 
Po, c-r,sii - e 0 )  fi+& . 

(7018) z 

Expression (7.18) gives a measure of the mixed metric in terms of con- 

secutive curves of the same sequence (7.1-b) 

I11 THE NUPERICAL PROCESS AND SUIQ'IARY 

This part deals with a list of the formulae for numerical 
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processes, brief specification of these processes and which at the same 

time gives a summary of pertinent results, The numbers attached to the 

formulae correspond to those in the body of the paper. 

The formal iterative solution of the system of equations 

is given by two form, 

The coefficients A and C may be computed by either one o f  

two sets of formulae, The first set is given as f O l l O W S :  

b a f'ixed integer 7 0  

By cyclical use of the recursive expressions ( 3 - 3 ) 9 - - - ( 3 0 5 )  
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the values of c,  , 
Each of these coefficients are then ultimately expressed in terms of 

the initial conditions given by (3.6) 

and f;" may be computed for any A? 
JLt 6 2  

The second set of expressions in the numerical determination 

of A and C are given in irreducible recursive forms. Thtse are listed 

in the text from statements (bel) to (4.11). A brief description is in 

order. The coefficients f in (3.2) are given by equations (4.1) 
and the associated ones (4.2),---(4.~) e For the coefficients 6 the e)bde$.f/'Ov5 

(4.6) to (!loll) are used, These quantities reduce to functions of 

the initial conditions given by (4.12). 

specification is given of a process in the numerical determination of 

the f's. 

In reference [5] a brief 

In what follows we are guided by the fact that 

where X " ' ( 9 j  the solution of system (1.1) is given by the series 
00 

- 44 
where X ,  , the partial sum solution of 

(1.8) 

has the form 

- -) -,x - * A  - & A  
Xa+,, and described by the sequence (7.1-a) ( X p  

and finally where X, 44 , the iterative solution of the system 

is given by the recursive expression (2.2) or non-recursive linear 
L-L - --) form (2,s) and described by the sequence ( N o  c.c- 3 A;+ ,>  4 Xo+LJ 



of the two sequences by (6,3), namely 

The radius of convergence of the series representation 

(1,10) of the actual solution K"4[ ( ; f j  of (1-1) is !;iven in two forx, 

namely as minixal and maximal values. The former is given as 
a 

(53, CCQ-CI )  

The maximal ranp;e for the actual solution (1,lO) takes the form 

determine the movable singularities of the actual solution (lo1O)., 

It is significant to knqw the rate of convergence of the 

iterative sequence (7.1-a) relative to the partial sum sequence 

(7-l-b), The quantity S, in the formulae that follows, measures this 

rate, It specifies tlie number of elc;,ients in (7,l-b) required to 

cover the interval between any two elements of the iterative sequence, 

The quantity S must satisfy t-ie following three inequalities: 



In view of the definition of the metric f o r  a complete 

metric space, 

( 7 0 4 )  

$he above inequalities are written as 

The most likely mode in the determination of the quantity S is by a 

numeric successive a )proximation process a 

Three miscellaneous expressions are given which may prove 

to be useful, The difference in the error functions over the range of 

of the iterative sequence, is given by 

A simple connection between any two elements of the partial sum sequence 

is given by 

The following inequ2lity gives -ngre  of a mixed metric in terms of 
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